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Abstract
Computer simulations of the β-phase of PbF2 using a polarizable ion interaction
potential are described. Studies of KF- and YF3-doped PbF2, as well as the pure
material are included. The simulations reproduce the macroscopic observables
associated with the transition to superionic behaviour well, including the heat
capacity, lattice constant and conductivity. An explanation is provided of the
familiar observation of the similarity of the conductivities of the superionic
solid just below and of the melt just above the melting transition. Comparisons
are made with diffraction and diffuse scattering studies, which confirm that
the nature of the fluoride ion disorder above the transition temperature in the
simulations is very similar to that deduced from experiments. This involves a
cooperative excitation of the fluoride sublattice, which results in the creation of
a large number of vacancies and interstitials. Detailed studies of the positional
correlations between these defects reveal a high degree of order associated
with specific clustering effects. These positional correlations appear to be
stronger than would be anticipated from recent mean-field descriptions of the
interactions between charged defects in superionic materials. The nature of the
correlations is compared with that associated with the interstitial clusters found
in moderately YF3-doped PbF2 at low temperatures.

1. Introduction

Lead fluoride is one of a number of systems of stoichiometry MX2 that adopt the cubic
fluorite crystal structure and which exhibit anion fast-ion conduction [1]. In the fluorites, the
transition to superionic behaviour is a continuous one (‘type-II’) and is not associated with
any structural change of the immobile lattice. Rather, the rate of increase of the conductivity
with increasing temperature [2] picks up in the vicinity of a temperature Tc (702 K for PbF2)
at which there is also a peak in the heat capacity [3] and an increase in the lattice parameter
[4]. At higher temperatures (but still well below melting) the conductivity saturates at about
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Figure 1. An illustration of the fluorite structure, showing the positions of the F(1), F(2) and
F(4) interstitial sites which have sometimes been invoked in crystal structure refinements. These
occur at F(1)–48i( 1

2 , u, u), with u ∼ 0.36; F(2)–323f(v, v, v), with v ∼ 0.4; F(3)–32f(w,w,w), with
w ∼ 0.31; F(4)–4b( 1

2 ,
1
2 ,

1
2 )—the classical octahedral site. The F(3) site in our analysis is not

distinguished from a large amplitude oscillation about the F(1) site.

the same value as achieved in the melt [2]. At low temperatures (<Tc) the behaviour of the
conductivity is consistent with the thermal excitation of isolated Frenkel pairs and the mobility
of the vacancies and interstitials thus formed [1]. As illustrated in figure 1, one of the features
of the fluorite lattice is the large, empty space about the octahedral site, denoted F(4). This
is certainly large enough to accommodate interstitials, and this has been presumed to be the
reason for the prevalence of superionic behaviour in fluorite-structured materials [1, 5]. The
situation may be contrasted with the cotunnite (α) phase of PbF2, which has a very similar
energy to the β form [6] but which is not superionic. The cotunnite structure does not readily
accommodate interstitials [7].

Low levels of aliovalent doping of β-PbF2, e.g. with either KF or YF3, increase the
conductivity in the temperature domain below Tc [2, 8]. The K+ or Y3+ ions substitute for Pb2+

on the normal cation sites and a fluoride vacancy or interstitial (respectively) is introduced.
However, the temperature dependence of the conductivity and heat capacity around Tc in
the doped and undoped materials indicates that a collective effect comes into play at this
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temperature and swamps the additional conductivity introduced by low levels of aliovalent
doping.

The nature of this collective effect has been a matter of controversy for several years and
it is with this that the present work is concerned. Recently, Maier and co-workers [9, 10] have
explored the predictions of a simple model of interactions between a finite concentration of
point defects introduced by Frenkel pair excitation. A similar model had earlier been proposed
by Hyland [11]. The model allows for the defect concentration (c)-dependent screening of
the Coulombic interactions between defects and, in a mean-field treatment, lowers the free
energy with a term which scales as c1/3. The theory predicts a sharp increase in the number of
defects close to some critical temperature and a heat capacity anomaly of similar appearance
to that observed experimentally [9, 11]. The nature of the disordering of the F− ions in a
number of fluorite-structured fluorides has been studied by neutron scattering, notably by
Hutchings and co-workers [4, 12, 13]. These studies seem to show the consequences of more
specific defect interactions than are included in the simple mean Coulomb-field description.
The diffraction data and diffuse scattering are consistent with the formation of vacancy and
interstitial clusters which extend over several unit cells. The interstitial site is not the classical
octahedral hole F(4); rather the F(2) and F(1), illustrated in figure 1, are found to be occupied.
Other F− ions in the vicinity are also displaced from their regular lattice sites. Around Tc the
number of these vacancies rapidly increases to about a quarter of all F− ions [4]: at higher
temperatures this value saturates, presumably due to (repulsive) interactions amongst the defect
clusters.

Computer simulations with effective pair potentials have reproduced (semi-quantitatively)
the observed behaviour of the conductivity [10, 14] and heat capacity [10]. However, they
have not shown consistency with the observed structural information or contributed to the
elucidation of the nature of the defect interactions. The most extensive studies of these aspects
of fluorite-structure materials have been made by Jaccucci and Rahman [15] and by Gillan
[16, 17] on CaF2. Both groups reported a much smaller number of vacancies than observed
experimentally and a very different structure for the disordered state than deduced from the
diffuse scattering studies. In particular, they found no evidence for any long-lived fluoride site
other than the regular lattice site.

In the present work we shall examine the fluoride disorder in pure β-PbF2 as well
as in KF- and YF3-doped systems and make detailed comparisons with the experimental
information, including the diffuse scattering. In previous MD simulation work on PbF2,
empirically parametrized, ‘rigid ion’ effective pair potentials have been used, in which
polarization (and other possible many-body) effects are subsumed within the effective
interaction parameters. A consequence of this is that the pair potential parameters
acquire unphysical values if viewed as properties of true pair interactions; in particular,
the C6 ‘dispersion’ parameter for the F–F interactions in CaF2 and PbF2 were found to
be about six times greater than could be justified on an ab initio basis [18, 19]. In the
simulations with effective potentials, this enhanced F–F attraction promotes F− ion disorder,
leading to superionic behaviour. In a realistic ionic potential, this effect appears to be
attributable to the polarization effects. The polarizable potential used here has already
been shown to describe a number of the properties of PbF2 successfully [7, 19], including
the phonon dispersion curves of the β-phase and ionic mobility in the α-phase. The
polarization of the Pb2+ ion has been shown to have an important influence on the ionic
motion and also on the predicted transition pressure to the α-phase. An advantage of
using a realistic potential is that it is transferable, permitting comparisons with related
materials, such as the highly conducting PbSnF4 [20], without changing the Pb–F interaction
parameters.
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2. Simulation details

The interaction potentials for all interactions involving Pb2+, F− and K+ have been specified
in previous work [19]. The interaction model includes full, formal charges on the ions, and
the Pb2+, K+ and F− ions have their full, in-crystal polarizabilities [21, 22]. Wherever possible
ab initio calculations [23] are used to parametrize sections of the model unambiguously. The
Y3+ ion is treated as a triply charged, polarizable species (αY3+ = 4.1 au). The same potential
is used to describe its short-range interactions with F− and Pb2+ as for the K–F and K–Pb
interactions, since these are not crucial to the properties of interest.

All the calculations described below were performed on systems containing 108 cations.
In the initial configurations of the doped systems, dopant cations were substituted for randomly
selected Pb2+ ions, and the resulting vacancies (KF) or interstitials (YF3) were placed on
randomly selected F− lattice sites or on the octahedral sites, respectively. The simulations
were equilibrated at the desired statepoint for 120 ps and statistics gathered in a subsequent
120 ps run. Most calculations were equilibrated at constant pressure and subjected to
Nosé–Hoover thermostats, using the algorithms suggested in [24].

A central part of our simulation analysis involves the assignment of F− ions to either the
normal site of the fluoride lattice, or to the other interstitial positions that they may visit. The
assignment must be fairly robust, to cope with the high degree of vibrational motion which
the ions exhibit at the temperatures of interest. To assign an ion to a site if it is within some
spherical region about the position of the site in the stationary lattice is not sufficient. A
convenient method [7], which exploits the fact that the Pb2+ ions do not exchange positions
during the course of the run (see below), is to assign an ion to a tetrahedral site if it is within
the tetrahedron whose vertices are formed by the instantaneous positions of the Pb2+ ions
which surround that site in the stationary lattice. The F− ion is inside the tetrahedron if
the vectors joining it to two of the vertices have negative scalar products with the normals
to the three planes in which each of the vertices lie. An ion which is not within any such
a tetrahedral site is said to be interstitial. Any empty tetrahedral site is said to contain a
vacancy. It is not meaningful to attempt to distinguish between the interstitial sites identified
from crystallographic refinements (figure 1) at the high temperatures at which the superionic
behaviour is observed.

3. Bulk properties of pure and lightly doped systems

We begin by presenting simulation results for the heat capacity, lattice parameter, diffusivity
and conductivity in pure β-PbF2 and in samples lightly doped (∼1%) with KF and
YF3 in order to establish the relationships between the simulated and real systems as regards
these bulk properties.

3.1. Heat capacity

The heat capacity of type-II superionic materials exhibits a peak as a function of temperature,
sometimes referred to as a ‘Bredig’ transition [11]. Since change in the conductivity is
continuous, this is the best way of assigning a transition temperature to the superionic domain.
The heat capacity is estimated from the differences between the internal energies of simulations
performed at intervals of 25 K. Since the simulations are performed at constant pressure, this
gives a measure of Cp. Results for simulations of the pure material and for 1% KF- and YF3-
doped samples are shown in figure 2. They show a peak for the pure material at a temperature of
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Figure 2. The heat capacities calculated for simulations of pure β-PbF2 (solid line) and for
1%-doped samples with KF (dashed line) and YF3 (dotted). Also shown (inset) is the lattice
parameter.

910 K, which rises by about 32 R (∼0.27 kJ mol−1 K−1) above the background. Experimentally
[3], the peak appears at 702 K; this difference, of 200 K in the transition temperature, reflects
a limitation of the simulation potential. The height of the experimental peak is about 20 R,
but this difference (and the different shapes of the simulated and experimental curves) may
reflect, in part, the crudeness of the numerical derivative we have used to estimate the heat
capacity. From the area under the heat capacity peak, we may estimate the entropy change
associated with the superionic transition

S =
∫ peak

dT
Cp

T
(3.1)

which gives a value of 12 J K−1 mol−1.
The doped samples give heat capacity peaks of similar shape and height to the pure

sample, which indicates that the change in F− order at the transition is not strongly affected
by the presence of the point defects. However, in the KF-doped system the peak has shifted to
significantly lower temperatures (by ∼30 K). This indicates that the presence of the extrinsic
vacancy in the sample has facilitated the F− disordering. The experimental data on the
conductivity of KF-doped PbF2 [2] also suggest a shift to lower temperatures in the transition
temperature.

3.2. Lattice parameter

The simulated system shows a sharp change in the mean lattice parameter as the temperature
varies across the transition region (see figure 2 (inset)). This change is quite similar to that
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Figure 3. Arrhenius plots of the ionic diffusivities calculated for the pure (+) and 1% KF (×)
and YF3 (◦) doped PbF2 samples. Note the doping-induced enhancement of diffusivity below the
transition temperature and the close similarity of the diffusivities in all samples above it.

observed in diffraction experiments [4]. The expansion across the transition (i.e. the difference
between the extrapolated low and high temperature lines) is about 0.3 Å, whereas in the
experiments it is about 0.2 Å. As with the heat capacity, this indicates a slightly bigger effect
than that seen experimentally, to which the small system size may be a contributory factor.

3.3. Diffusivity

The diffusion coefficient may be calculated from the long time slope of the mean-squared
displacement of the fluoride ions, i.e.

D = lim
t→∞

〈|δr1(t) |2〉
6t

(3.2)

where δr1(t) is the displacement of a typical fluoride ion in time t. In practice ‘long-time’
means over the range 30–50 ps. Examples of such mean-squared displacement curves appear
below. The mean-squared displacements reveal a marked effect of aliovalent doping on the
ionic mobility below the transition temperature, but essentially no effect above it. This is
confirmed by plotting the diffusivities of the pure and 1% doped samples versus 1/T in
figure 3. The enhancement of diffusivity below the transition temperature is due to the
introduction of vacancies and interstitials by KF and YF3 doping, respectively. Above the
transition, it appears that this effect is swamped by ionic mobility associated with the F−

disorder. Note too that after the rapid rise of the diffusivity in the transition region, it plateaus
and acquires a very slow temperature variation. This plateau persists over a temperature
interval of more than 200 K before the simulated sample melts.

The behaviour revealed by the temperature dependence of the diffusivities is (at least)
qualitatively consistent with that of the experimentally observed conductivity in doped and
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pure PbF2. Measurements on KF-doped samples over a wide range of compositions and
temperatures have been made by Hull et al [2] and Liang and Joshi [8] measured the
conductivity of YF3 (and KF) doped samples below Tc. As well as ‘swamping’ of the extrinsic
vacancy effect above Tc the KF measurements also show that the low temperature enhancement
of conductivity by doping saturates for doping levels above about 2%, presumably as a
consequence of vacancy–vacancy interactions. The simulated diffusivities exhibit the same
behaviour.

From the Arrhenius plots of the diffusivities in figure 3 we can extract some information
on the energetics of the diffusion process in the different samples below Tc. In this temperature
domain, the behaviour of the diffusivity exactly parallels that of the ion-hopping rates extracted
from a time-dependent analysis of the F− site occupation, as described in detail in [7]. For
the pure material we obtain an activation energy of about 95 kJ mol−1 (i.e. 1 eV). Given that
diffusion in the pure material requires Frenkel pair formation, and since this is likely to be the
rate-determining step of diffusion, we interpret this activation energy as the effective Frenkel
pair formation energy in the simulated sample for temperatures of the order of 700–800 K.
We can also estimate (crudely) the activation energies for vacancy and interstitial migration
from the results for the doped samples. At the temperatures of the simulations, a significant
number of the ion hops observed in these samples will be due to the intrinsic (Frenkel pair)
mechanism. We therefore estimate the number of hops associated with the presence of the
extrinsic vacancy or interstitial in the doped samples, by removing the estimated number of
intrinsic hops from the total, and then subjecting the remaining hops to an Arrhenius analysis.
This gives vacancy and interstitial migration energies of 45 and 48 kJ mol−1 respectively.

3.4. Conductivity—evidence of collective effects

Electrical conductivity is only directly related to the ion-hopping rate and diffusion coefficient
if the motion of different ions is uncorrelated. We have examined this assumption and found
significant differences between the degree of interionic correlations in the superionic crystal
and liquid.

3.4.1. Conductivity calculation—method. Quite generally, the ionic conductivity is
calculable as an integral over the charge current correlation function [25]

λK = βe2

V

∫ ∞

0
J (t) dt (3.3)

where β = 1/kT, e is the electronic charge and J is

J (t) =
N∑
i=1

N∑
j=1

QiQj 〈vi (t) · vj (t)〉 (3.4)

=
N∑
i=1

Q2
i 〈vi (t) · vi (0)〉 +

N∑
j=1

N∑
i �=j

QiQj 〈vi (t) · vj (0)〉 (3.5)

with Qi and vi the charge and velocity of each ion. The conductivity therefore involves the
relative motion of the cations and anions. It is much more difficult to calculate than the
diffusion coefficient as it is a collective quantity, so that converging the integral in the equation
involves very long runs. A frequently used approximation is to neglect all the correlations in
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the velocities of different ions, which leads to the so-called Nernst–Einstein relationship for
conductivity

λNE = βe2(ρ+Q
2
+D+ + ρ−Q2

−D−) (3.6)

where ρα and Dα are the number density and diffusion coefficient of species α. For an
anion superionic conductor D+ is zero, giving the normally assumed relationship between
conductivity and anion diffusivity [1].

It is convenient to re-express the conductivity in the form of a mean-square displacement
to make clear the problems of converging the integral in equation (3.3). This expression is

λK = βe2

V
lim
t→∞(6t)

−1

〈∣∣∣∣∣
∑
i

Qi (δri(t))

∣∣∣∣∣
2〉

(3.7)

as can be shown by substituting

δri (t) =
∫ t

0
dτ vi (τ ) (3.8)

and using the stationarity of the correlation function to complete the integral ([25] p 201).
Equation (3.7) can be written in the form

λ = βe2

V
lim
t→∞(6t)

−1〈|Q+∆+(t) +Q−∆−(t)|2〉 (3.9)

where ∆α(t) is the net displacement of all the ions of species α in time t

∆α(t) =
∑
iεα

δri(t). (3.10)

Thus a plot of the mean-squared displacement appearing in the angle brackets versus time,
should become linear after the short-time correlations have died out and the conductivity can
be calculated from this slope. This equation makes it clear (bearing in mind the opposite signs
of the cation and anion charges) that the conductivity involves the displacement of the set of
anions relative to the set of cations. The Nernst–Einstein approximation can be written in an
equivalent form:

λNE = βe2 lim
t→∞(6t)

−1[Q2
+ρ+〈|δ+(t)|2〉 +Q2

−ρ−〈|δ−(t)|2〉] (3.11)

where δα(t) is the displacement of a single ion of species α.

3.4.2. Conductivity—results. We have calculated the collective conductivity for comparison
with the Nernst–Einstein value at two temperatures which bracket the melting transition of the
simulated material. Calculations were carried out at 1300 K (solid) and 1400 K (liquid). In
both cases the simulations were first equilibrated at zero pressure and then the runs continued at
the zero pressure density while the statistics on the particle displacements were accumulated.
Results for the mean-squared displacements required in equations (3.11) and (3.9) are shown
in figure 4 where we also show the mean-squared displacement of the Pb2+ ions. Very long runs
(0.6 ns) were required to get results of this statistical quality for the collective mean-squared
displacement.

The mobility of both ionic species increases substantially across the melting transition;
the F− mobility increases by about a factor of 4, and the Pb2+ data are shown in the figure.
The latter confirm that the Pb2+ ions are merely vibrating about their lattice sites in the 1300 K
run, but have quite large diffusivities in the liquid at 1400 K (∼5.8 × 10−5 cm2 s−1). The
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Figure 4. The collective and single particle mean-squared displacements (msd) of the ions for
(a) the solid, just below the melting point, and (b) the liquid just above it. The solid line shows
the collective charge msd and the slope of this line at long times gives the conductivity from
equation (3.9). The long-dashed line shows the estimated charge displacement calculated from the
single particle msds ignoring interionic correlations (the slope gives the Nernst–Einstein estimate
of the conductivity, equation (3.11)). The short-dashed lines give the single particle msds of the
Pb2+ ions, showing no diffusion in the solid phase and appreciable motion in the liquid.

result is that the Nernst–Einstein conductivity, predicted from the uncorrelated diffusion of the
ions, increases by about a factor of 5. The true conductivity, which includes the correlation
between the motion of different ions, increases by much less (by about 70%). In the liquid,
the collective conductivity is slightly lower than the Nernst–Einstein value. This is typical
behaviour for a strongly dissociated molten salt [25] and is normally seen as the consequence
of the mutual attraction between cations and anions. For the solid, on the other hand, the
collective conductivity is more than twice the Nernst–Einstein value. This indicates that
the movement of the F− ions through the Pb2+ is strongly correlated—it is suggestive of
the collective motion of clusters of defects, or the existence of relatively long-lived diffusion
pathways along which several ions move. The ratio of the Nernst–Einstein to the collective
conductivity in a crystalline solid is known as Haven’s ratio [26]. It can be calculated for
isolated point defect models of the ionic motion (e.g. vacancy or interstitialcy models). As
we shall see below, the F− sublattice in PbF2 close to the melting point is so strongly excited
that it does not seem profitable to compare with theoretical values calculated on the basis of
isolated point defects.

This observation of very different effects of correlated diffusive motion in the solid and
liquid provides a rationalization for the relatively small increase of conductivity across the
melting transition observed for PbF2[2] and other fluorite-structured superionic conductors [1].
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4. Diffraction experiments and the F− disorder

The total neutron scattering intensity is proportional to

Stot(Q) = SPbPb(Q) + 2SPbF(Q) + SFF(Q) (4.1)

where

Sαβ = 〈A∗
α(Q, t)Aβ(Q, t)〉 (4.2)

and the angle brackets denote a time average. Aα(Q, t) gives the instantaneous amplitude of
scattering by species α at scattering vector (Q):

Aα(Q, t) =
Nα∑
j=1

bαcoheiQ·rj (t) (4.3)

where bαcoh is the value of the scattering length for species α. In simulations, periodic boundary
conditions are employed, so the only points at which scattering intensity can be calculated
must satisfy

Q = 2π

na
(lx, ly, lz) (4.4)

where a is the unit cell length of the crystal, n is the number of unit cells along a given direction
of the simulation cell, and lx, ly and lz are integers. The total scattering contains contributions
from the time-averaged structure of the system, which is responsible for the Bragg scattering,

SBragg(Q) = |〈APb(Q, t) +AF(Q, t)〉|2 (4.5)

(recall that the angle bracket denotes a time average) and from diffuse scattering, which is due
to thermal and structural disorder,

Sdiff(Q) = Stot(Q)− SBragg(Q). (4.6)

Both the Bragg and diffuse scattering contain information on the F− disorder in PbF2.

4.1. Bragg scattering and the number of F− vacancies

For a fluorite-structured crystal, Bragg peaks are expected at scattering vectors (k =
2π
a
(m, n, p) with m + n + p even. However, the contributions from the cation and anion

sublattices to the Bragg scattering amplitude are out of phase when m + n + p is not divisible
by 4 [2], so that the Bragg intensity at these positions depends on the difference between
the average scattering powers of the two sublattices. The neutron scattering lengths of F
and Pb are in the ratio 1:1.67 (5.645 fm and 9.405 fm, respectively), so that the intensity
of the m = n = p peaks becomes proportional to (nF − 1.67nPb)

2 where nF and nPb are
the mean numbers of F− and Pb2+ ions on their lattice sites. Since, at low temperature,
nF ∼ 2nPb the intensity becomes very sensitive to any variation in the occupancy of the F−

lattice sites (the Pb2+ ions merely vibrate about their lattice sites even in the superionic phase).
Hull and co-workers [2] have exploited this sensitivity to measure the temperature variation of
the number of F− vacancies from the intensity of the (222) reflection, which is unobservably
small at low temperatures but acquires appreciable intensity close to Tc.

We have calculated the (222) Bragg-peak scattering intensity in the computer simulation,
using equation (4.5) and the results are shown in figure 5. Initially, the intensity drops with
increasing temperature, which reflects the greater amplitude of the F− vibration about its
lattice site relative to the heavier Pb2+, so that, in effect, |nF − 1.67nPb| is reduced (Debye–
Waller factor). This behaviour is not seen in the experiments as the peak is too weak in
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Figure 5. The intensity of the (222) Bragg peak calculated from the simulations of pure PbF2 at
different temperatures.

this temperature domain. At Tc a substantial number of the F− ions leave their lattice sites
and |nF − 1.67nPb| increases sharply and then plateaus out at still higher temperatures. This
behaviour closely parallels that seen experimentally. We have also directly calculated the
fraction of vacant tetrahedral F− sites from the site occupancy analysis. The number of vacant
sites begins to increase below the transition temperature due to the normal thermal excitation
of isolated Frenkel pairs, before rising dramatically in a small temperature region around Tc.
The number then begins to plateau. This behaviour agrees well with that of the fraction of
vacant sites deduced from the experimental studies, except that the plateau value reported by
Hull et al corresponds to about 1/4 of the sites vacated, whereas we find a fraction closer to
1/3. It is possible that this difference arises from the different ways in which the fraction
of vacant sites is deduced, but a greater degree of disorder in the simulations could also be
seen as consistent with the larger values of the rises in the heat capacity and lattice parameter
reported above.

It is of interest to contrast this result, pointing to a very high degree of disordering at Tc

in PbF2, with the simulation study of CaF2 by Gillan [16, 17]. He analysed the site occupancy
above and below Tc by a different method and reported a much lower number of vacancies
(∼2%).

It is also interesting to combine the information that roughly 1/3 of the F− are excited off
their lattice sites across the transition with the enthalpy of the transition in order to calculate
an effective enthaply for this excitation. Previously we calculated the entropy change across
the transition to be 12 J K−1 mol−1 and using TS = H we obtain an enthalpy change of
32.5 kJ mol−1 for the excitation of one mole of F− defects. This value is considerably lower
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than the Frenkel pair formation energy of 95 kJ mol−1 (at 700–800 K), which we estimated
above from the diffusivity, and points to a high degree of cooperativity in the way that the F−

lattice becomes disordered at Tc.

4.2. Diffuse neutron scattering—structure in the disordered state

The disorder in the superionic state gives rise to appreciable diffuse scattering and this has been
studied in single crystal neutron scattering for SrCl2 and CaF2, as well as PbF2, by Hutchings
et al [12]. Interestingly, the patterns show appreciable differences, despite the similar
behaviour of the macroscopic phenomena associated with their superionicity. The diffuse
scattering of interest is that due to the disorder of the anions, which will be contained within
the elastic and quasielastic contributions to the total scattering. This is what is measured
experimentally on a triple axis spectrometer. However, the diffuse scattering given by
equation (4.6), which is readily calculated in a computer simulation, is the total diffuse
scattering and includes inelastic scattering due to phonons. This inelastic scattering is likely
to form broad features around the most intense Bragg-peak positions and appreciably affect the
overall appearance of the diffuse scattering. To separate the elastic and inelastic components
in the simulation would be very difficult, as it would require the spectral resolution of the
dynamic structure factor at every wave vector.

We therefore resort to an approximation to compare with the diffuse scattering data.
Since the scattering of interest arises from the F− ions, we set the cation scattering length in
equation (4.6) to zero. Since the Pb2+ ions are much heavier than the fluorides, their motion
will dominate the acoustic phonon branches, so that setting the Pb scattering length to zero
will largely remove the inelastic scattering from the acoustic branches.

In figure 6 we compare the diffuse scattering calculated in this way at temperatures (a) just
below Tc (850 K), (b) just above Tc (950 K) and well within the superionic domain (1050 K).
The most prominent feature of the experimental data [12] is a broad peak along the 〈100〉
direction centred at roughly (2.3, 0, 0) with a second, weaker feature along 〈111〉, peaking just
beyond (2, 2, 2). The calculated pattern below Tc (figure 6(a)), where the F− disorder is low,
shows the residual effect of the phonon scattering. Sidebands displaced along 〈100〉 from the
Bragg peak positions at (2, 2, 0) and (2, 2, 2) are the only regions of the scattering plane at
which significant intensity is observed. Above Tc, however, a new strong feature develops at
about (2.3, 0, 0) as a consequence of the disordering of the F− ions, in good agreement with the
experimental observations. The scattering around (2, 2, 2) also broadens and shifts out along
the 〈111〉 direction, but this does not appear to have as much intensity as the experimentally
recorded pattern. In the experiment, there is very little scattering close to (2, 2, 0), whereas
there is a significant peak in the simulation results; however, from the below-Tc (850 K) data,
we associate this with residual phonon scattering.

5. Nature of the F− disorder in the superionic state

Our conclusion from the comparisons described above is that the simulations reproduce the
experimentally observed phenomena associated with superionic behaviour sufficiently well
for us to undertake a detailed examination of the F− ion disorder in them with some confidence
that this parallels that of the ions in the real material.

5.1. The spatial distribution of F− ions

In figure 7 we contrast contour plots for the F− ion distributions for several systems. In all
cases, we see the projection of the probability distributions onto a [100] plane, so that the view
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Figure 6. Diffuse neutron data calculated along the three principal crystallographic directions at
(a) 850 K, (b) 950 K and (c) 1050 K, plotted versus the distance (in units of 2π/a0) along the
〈100〉 and 〈110〉 directions. Note that different contour levels are used in the three figures, the most
significant feature being the growth of the diffuse scattering feature at about (2.3, 0, 0).

is dominated by peaks around the F− ion tetrahedral sites, which form a simple cubic lattice.
The Pb2+ ions have been omitted; had they been shown they would have appeared at the centre
of each of the square cells between the F− sites. The view shown in figure 7(a) corresponds to
a 1% KF-doped system and is very similar to that obtained for the undoped crystal (not shown)
at this temperature, which is below Tc for the simulation, with the F− ions simply vibrating
about their lattice sites. For the KF-doped system at this temperature there is appreciable
conductivity due to the motion of the extrinsic vacancy. That this causes no apparent change
in the contour plots indicates that the vacancy simply hops from lattice site to lattice site, with
no significant long-lived intermediate. By contrast, in the 1% YF3-doped system at 800 K
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a) b)

c) d)

Figure 7. Contours showing the probability distributions for the fluoride ions projected in the
〈100〉 plane are shown for (a) the 1% KF-doped solid at 800 K, (b) the 1% YF3-doped solid at
800 K (note the occupancy of the classical F(4) interstitial position), (c) the pure solid above the
superionic transition temperature (with the F(4) site unoccupied) and (d) a 5.5% YF3-doped system
at 800 K.

(figure 7(b)), which contains a single extrinsic interstitial in the simulation cell and has a
conductivity close to that of the KF-doped system, we see new features in the probability
distribution which are due to the transient location of ions at several interstitial sites during
the course of the run. These additional features are peaked at the centre of each square cell
of the F− lattice which corresponds to the position of the classical cube-centre interstitial
F(4) site of the fluorite lattice (i.e. the octahedral hole of the close-packed Pb2+ lattice,
see figure 1). That this classical interstitial site is the preferred location of the interstitial
below Tc can be confirmed by several other measures.



Fluoride ion disorder and clustering in superionic PbF2 9977

Above Tc in the pure material (figure 7(c)), the appearance of the F− probability distribution
changes markedly. We now see significant intensity between the normal F− lattice sites (the
level of the lowest contour in this figure is some five times greater than for the (a) and (b)
panels). However, this extra intensity is not peaked about the classical interstitial F(4) sites; in
fact, the cube-centre sites are minima for the F− distributions (as checked by other measures).
Instead, the additional intensity appears as X-shaped extensions (in this projection) of the
thermal envelope of F− positions about their normal lattice sites. In the lightly doped samples,
the contour plots above Tc are very similar in appearance to those shown in the figure, i.e. the
intrinsic F− disorder above Tc associated with the X-shaped plots swamps the effect of the
extrinsic defects.

It is not possible to associate the X-shaped plots with the occupation of any other
metastable F− site within the fluorite lattice. If we rapidly quench the ionic motion to
zero temperature in order to try to force the system to some local minimum, the ions merely
return to their normal lattice sites no matter how rapidly the quench is undertaken. A better
way of understanding the nature of the structure responsible for the X-shaped distribution is
prompted by the comparison of the pure system probability distribution above Tc with that of
a fairly heavily YF3-doped system below Tc. Figure 7(d) shows the probability distribution
for a 5.5% YF3-doped system at 800 K (i.e. there are six Y3+ ions and therefore six extrinsic
interstitials in the cell). It can be seen to exhibit similar, but more pronounced, X-shaped
features to the pure superionic system. These features appear at several points across the cell,
indicating that they are associated with mobile defects.

These features are the signal of interstitial clustering in the heavily doped system: that is,
despite the fact that the interstitial ions carry a charge, they prefer to cluster together rather than
separate under the influence of their Coulomb repulsion. These simulations were initialized
from randomly chosen classical interstitial sites for the extrinsic vacancies and the Y3+ ions
are randomly placed on the Pb2+ lattice. Several different startups gave very similar outcomes.
The positions of the clusters seemed to bear little relationship to the Y3+ positions.

5.2. Interstitial clusters in the doped systems

The phenomenon of interstitial clustering is a well-established aspect of moderately doped
fluorite-structured materials. It contributes to a fall-off in the conduction induced by aliovalent
doping at high concentrations and has been studied with diffraction [27, 28] and NMR [29]
in several materials. The preferred structures for the clusters in the simulations of the doped
systems may be identified by cooling to low temperatures and examining the configurations
which result. In the present simulations the preferred motif is based upon the tetrahedral
arrangement illustrated in figure 8. The tetrahedron consists of three extrinsic interstitials plus
a further interstitial resulting from the displacement of an F− ion off the tetrahedral site around
which the cluster is based. The cluster therefore has a net charge of −3. As illustrated in
the figure the interstitials are in F(2) sites—displaced along 〈111〉 directions away from the
central tetrahedral site so that they are about two-thirds of the way to the classical cube-centre
F(4) interstitial site. We have also checked that this cluster structure persists in the simulations
of the heavily (5.5%) YF3-doped systems at temperatures of the order of 800 K by comparing
the diffuse scattering pattern obtained from randomly oriented clusters with the time average
diffuse scattering calculated in the simulations. At high doping levels, we also see double-
tetrahedral clusters, as shown in figure 8. These involve six interstitials and two vacancies
produced by F− ions displaced from their lattice sites into interstitial sites and thus have a net



9978 M J Castiglione and P A Madden

a) b) c)

d)

Figure 8. Four different types of cluster based on the occupation of F(1) and F(2) interstitial sites.
The F(2) and F(1) sites appear as light and dark-shaded circles along the 〈111〉 and 〈110〉 vectors,
respectively, and vacancies are indicated by squares on the lattice sites. (a) is the Willis cluster,
(b) the 〈110〉 pair cluster, (c) the double tetrahedral cluster, and (d) the single tetrahedral cluster.

charge of −4. The interstitials occupy the F(1) and F(2) sites in the ratio 1:2, which is the
same as observed experimentally [28].

The tetrahedral cluster may be contrasted with other structures that have been suggested
for fluorite-structured materials from the analysis of diffuse scattering patterns. Hull et al [27]
showed that the diffuse scattering in YF3-doped CaF2 at low temperatures was consistent with
a cube octahedral structure and that this persists up to temperatures of order 500 K before
dissociating. This structure also provides the best explanation of the ratio of interstitial site
occupancies observed in NMR [29]. We have examined the stability of this structure in the
YF3-doped PbF2 simulations. It can be prepared and remains metastable at low temperatures,
if the Y3+ ions are symmetrically disposed in the immediate vicinity of the cluster to counteract
the Coulombic repulsion between the interstitials, but subsequently disproportionates to form
smaller clusters based upon the tetrahedron. We also examined the diffuse scattering pattern
arising from the tetrahedral cluster. Although there are considerable similarities with the
cuboctahedral pattern, the latter is definitely a better fit to the diffuse scattering observed
in YF3-doped CaF2. On the other hand, Ito et al [28] have reported that the occupancies
of interstitial sites deduced from the diffraction pattern observed in BiF3-doped PbF2 is not
consistent with a cuboctahedral cluster and it would appear that the tetrahedral cluster, with
only F(2) sites occupied, does give better agreement with the data. Another cluster relevant
to our discussion is the ‘Willis’ cluster, illustrated in figure 8 and discussed by Hutchings
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et al [12] as the best cluster model for the diffuse scattering observed in the superionic
phase of PbF2; we will discuss the relationship between this and the tetrahedral structures
below.

The suggestion that emerges from this comparison of the F− probability distributions in
the pure material above Tc and the heavily YF3-doped systems below Tc is that the superionic
transition involves the collective excitation of F− ions off their lattice sites to form transient
clusters similar to those seen as stable low temperature structures in the doped systems. We
will examine this relationship more closely in the next section.

5.3. Positional correlations between the defects

The similarity between the local arrangements in the heavily YF3-doped system and in the pure
material above Tc is reinforced by an examination of the correlations between the positions of
the ions. Since the materials are studied at high temperature, where the ions are quite mobile,
these liquid-like measures of the spatial correlations give a more reliable picture than trying
to recognize particular clusters from instantaneous configurations. The site analysis program
allows us to distinguish between F− ions that lie within the tetrahedra with vertices on the Pb2+

sites, which correspond to the normal F− sites of the fluorite lattice, and those which are not.
The empty tetrahedral sites will be termed vacancies (V) and the ions outside these tetrahedra,
interstitials (I). Note that these include any ions at the F(1) and F(2) as well as those at the
classical F(4) site (which, as discussed above, has a very low probability of being occupied
above Tc).

A useful measure of the spatial correlations between these defects is interstitial–vacancy
(I–V) and interstitial–interstitial (I–I) coordination numbers. The I–V coordination number
is the number of interstitials that are found within 3.2 Å of the vacancy site. This distance
corresponds to the F–F separation in PbF2, so that the I–V coordination number will give the
number of interstitials that share a common face with the tetrahedron surrounding the site
of the vacancy. A mean I–V coordination number of 1 would therefore correspond to an
isolated, undissociated Frenkel pair, whereas a coordination number of 4 would correspond to
the tetrahedral cluster illustrated in figure 8. The I–I coordination number gives the number of
interstitials found within 4.1 Å of another interstitial. The distance was selected as the position
of the first minimum in an I–I radial distribution function; note that it is substantially shorter
than the distance between the centres of the nearest octahedral sites (i.e. between nearest
F(4) sites) which is equal to the separation between nearest Pb2+ ions (4.5 Å). An isolated
tetrahedral cluster would give rise to an I–I coordination number of 3.

Results for the average number of vacancies which have a particular coordination number
(of interstitials) are plotted in figure 9. Figure 9(a) shows the results for YF3-doped material
at 800 K, i.e. below Tc, at various levels of doping. For low doping levels (<2%), the number
of vacancies (the area under the graph) is small and roughly constant. The most probable V–I
coordination number is 1, indicating that the interstitial remains tightly bound to the vacancy,
i.e. the vacancies appear as part of a thermally excited Frenkel pair. At higher doping levels
we see an increase in the number of vacancies and in the number that are coordinated to four
interstitials. That is, when the number of extrinsic interstitials in the simulation cell exceeds
three, they tend to create vacancies and form tetrahedral clusters. The behaviour of the I–I
coordination number probability distributions in the doped systems (figure 10(a)) is consistent
with this picture. Up to a 3% doping level the predominant I–I coordination number is 0,
indicating well-separated interstitials, but at higher concentrations the interstitials associate
to give a distribution which is sharply peaked at 3. At the highest doping level (5.5%), the
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Figure 9. The distribution of vacancy–interstitial coordination numbers for (a) various
YF3-doped samples at 800 K (below the transition temperature) and (b) for pure PbF2 at different
temperatures.

average coordination numbers were consistent with the formation of the double tetrahedral
cluster, illustrated in figure 8.

In figure 9(b), we compare this behaviour with that of the I–V probability distribution
of the pure material as the temperature is raised through Tc. Below Tc (<950 K) we see a
gradual increase in the number of bound Frenkel pairs, though there is some tendency for
them to be associated, as shown by the significant number of vacancies which are close to
two interstitials at 900 K. Around Tc there is a dramatic increase in the number of vacancies,
as already seen in figure 5, which saturates at higher temperatures. The most probable
coordination number of interstitials around the vacancies is 3; apart from this point of detail,
the thermal behaviour of the pure system is remarkably similar to that of the doped system
with increasing concentrations of extrinsically introduced interstitials. The high temperature
pure system I–I distribution (figure 10(b)) is somewhat broader than that of the doped system
(figure 10(a)), and indicates a higher degree of association as the temperature is raised to
1100 K.

The degree of disorder of the F− ions above Tc is very high, with about 30% of the
F− ions displaced from their lattice sites and associated with a high degree of mobility (fluidity).
As such, it should be described in terms of particular local structural motifs (i.e. clusters) with
care—a liquid-like viewpoint is more reliable. However, since diffuse scattering results tend
to be interpreted in terms of clusters it is perhaps appropriate to reduce the information in
the figures to these terms. A comparison of the highly probable coordination numbers in the
simulations with those that would be predicted from the various cluster structures shows that
the data are consistent with a roughly equal mixture of the 〈110〉 pair clusters and the double
tetrahedral cluster. Both involve two vacancies on adjacent sites. The 〈110〉 pair cluster has
a charge of −2, and has two F− ions on F(2) and two on F(1) sites. Catlow and Hayes [5]
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Figure 10. The distribution of interstitial–interstitial coordination numbers for (a) various
YF3-doped samples at 800 K (below the transition temperature) and (b) for pure PbF2 at different
temperatures.

showed that there was a barrier to recombination for this cluster in a low temperature lattice.
The double tetrahedral cluster has a charge of −4, which must be balanced by vacancies
elsewhere in the lattice and twice as many ions associated with F(2) compared to F(1) sites.
Hutchings et al [12] interpreted their diffuse scattering results in terms of the Willis cluster,
which has the same proportion of F(2) to F(1) sites and equates to half the double tetrahedral
cluster.

6. Conclusions

The polarizable ion simulation potential has been shown to reproduce, semi-quantitatively,
many of the observable properties associated with the transition of PbF2 to superionic
behaviour. Included in the study has been the effect of aliovalent doping on the conductivity
of β-PbF2, which can be contrasted with our earlier examination of this effect in the
‘non-conducting’ α phase [7]. In the study of conductivity, we have provided an explanation
for the similarity of the values of conductivity above and below melting, which is a
frequently observed phenomenon in superionic materials. In the crystal, the motions of
individual ions are strongly correlated, resulting in a conductivity which is more than
twice that estimated from the Nernst–Einstein formula. After melting, the individual
ionic mobilities do increase substantially, but the correlations become slightly negative,
as is typical for a molten salt, so that the anticipated large jump in conductivity does
not occur.

The principal purpose of the paper was to examine the nature of the disorder in the
superionic phase. We have shown that the disorder in the simulations is consistent with the
diffraction and diffuse scattering information on PbF2 [6, 12]: perhaps the greatest limitation
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on the comparison with diffuse scattering is the difficulty of fully eliminating the inelastic
contributions in the simulations. The simulations show that the transition to superionic
behaviour is associated with the excitation of a very large fraction of the F− ions off their
lattice sites (in agreement with the experimental analyses). On this our results differ markedly
from those of Gillan who studied the related material CaF2 [16, 17] with an effective pair
potential and reported only a small fraction displaced: whether this is due to the material,
the interaction potential or the method of structural analysis is, at present, unclear. In our
calculations, the displaced ions are found in the vicinity of F(1) and F(2) interstitial sites
(see figure 1), in agreement with experiment,and not at the classical cube-centre F(4) interstitial
site of the fluorite lattice.

The collective excitation appears as a consequence of an attractive effective interaction
between interstitial ions, which results in pronounced spatial correlations between the
interstitial ions and vacancies in the superionic phase. These correlations seem to be much
stronger than could arise from the mean-field Coulombic interaction recently studied by Maier
and co-workers [9]. The local ordering is similar (but not identical) to that found in the
interstitial clusters formed by moderately doping PbF2 with YF3. Since the latter can be
formed at low temperatures, their structures may be fully characterized. The origins of the
effective attraction will be studied in future work.
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